http://vyuka.safarikovi.org/  

Elementátní funkce 

> restart; 1
> with(plots, display); -1

Obecná mocnina y = x^alpha 

i)   x, x^3, x^5, x^(3/5) 

> plot([x, x^3, x^5, x^(3/5)], x = -3 .. 3, y = -3 .. 3); 1

Plot 

ii)   x^2, x^4, x^(2/3) 

> plot([x, x^2, x^4, x^(2/3)], x = -3 .. 3, y = -1 .. 3, scaling = constrained); 1

Plot 

iii)   x^(3/2), x^(1/2) 

> plot([x, x^(3/2), x^(1/2)], x = -3 .. 3, y = -1 .. 3, scaling = constrained); 1

Plot 

iv)   x^sqrt(2) 

> plot([x^sqrt(2)], x = -3 .. 3, y = -1 .. 3, scaling = constrained); 1

Plot 

v)   1/x, 1/x^3, 1/x^(1/3) 

> plot([1/x, 1/x^3, 1/x^(1/3)], x = -3 .. 3, y = -3 .. 3); 1

Plot 

vi)   1/x^2, 1/x^4, 1/x^(2/3) 

> plot([1/x^2, 1/x^4, 1/x^(2/3)], x = -3 .. 3, y = -1 .. 3, scaling = constrained); 1

Plot 

vii)   1/x^(1/2), 1/x^(1/4), 1/x^(7/4) 

> plot([1/x^(1/2), 1/x^(1/4), 1/x^(7/4)], x = -3 .. 3, y = -1 .. 3, scaling = constrained); 1

Plot 

viii)   x^(-sqrt(2)) 

> plot([x^(-sqrt(2))], x = -3 .. 3, y = -1 .. 3, scaling = constrained); 1

Plot 

Exponenciální funkce y = a^x 

i)   1 < a; 1; (2/3)^x, exp(x), 10^x 

> plot([10^x, exp(x), (3/2)^x], x = -3 .. 3, y = -1 .. 3, scaling = constrained); 1

Plot 

ii)   a = 1; 1; 1 

> plot(1, x = -3 .. 3, y = -1 .. 3, scaling = constrained); 1

Plot 

iii)   0 < a and a < 1; 1; (2/3)^x, (1/2)^x, (1/10)^x 

> plot([(2/3)^x, (1/2)^x, (1/10)^x], x = -3 .. 3, y = -1 .. 3, scaling = constrained); 1

Plot 

Logaritmická funkce  

i)    

> plot([log[3/2](x), ln(x), log[10](x)], x = 0 .. 10, y = -5 .. 5, scaling = constrained); 1
plot([log[3/2](x), ln(x), log[10](x)], x = 0 .. 10, y = -5 .. 5, scaling = constrained); 1

Plot 

ii)    

> plot([log[1/10](x), log[1/2](x), log[2/3](x)], x = 0 .. 10, y = -5 .. 5, scaling = constrained); 1
plot([log[1/10](x), log[1/2](x), log[2/3](x)], x = 0 .. 10, y = -5 .. 5, scaling = constrained); 1

Plot 

Goniometrické funkce y = sin*x, y = cos*x, y = tg*x, y = cotg*x 

i)    

> plot(sin(x), x = -Pi .. Pi, scaling = constrained); 1

Plot 

ii)   cos x 

> plot(cos(x), x = -Pi .. Pi, scaling = constrained); 1

Plot 

iii)   tg x = 

> p1 := plot(tan(x), x = -1/2*Pi .. 1/2*Pi, y = -10 .. 10); -1

> p2 := plot(tan(x), x = -Pi .. -1/2*Pi, y = -10 .. 10); -1

> p3 := plot(tan(x), x = 1/2*Pi .. Pi, y = -10 .. 10); -1

> display([p1, p2, p3]); 1

Plot 

iv)   cotg x  

> p1 := plot(1/tan(x), x = 0 .. Pi, y = -10 .. 10); -1

> p2 := plot(1/tan(x), x = -Pi .. 0, y = -10 .. 10); -1

> display([p1, p2]); 1

Plot 

up

2007 - 2017 © Jan Šafařík